Total Information Risk Management

OCDQ Radio is an audio podcast about data quality and its related disciplines, produced and hosted by Jim Harris.

During this episode, I am joined by special guest Dr. Alexander Borek, the inventor of Total Information Risk Management (TIRM) and the leading expert on how to apply risk management principles to data management.  Dr. Borek is a frequent speaker at international information management conferences and author of many research articles covering a range of topics, including EIM, data quality, crowd sourcing, and IT business value.  In his current role at IBM, Dr. Borek applies data analytics to drive IBM’s worldwide corporate strategy.  Previously, he led a team at the University of Cambridge to develop the TIRM process and test it in a number of different industries.  He holds a PhD in engineering from the University of Cambridge.

This podcast discusses his book Total Information Risk Management: Maximizing the Value of Data and Information Assets, which is now available world-wide and is a must read for all data and information managers who want to understand and measure the implications of low quality data and information assets.  The book provides step by step instructions, along with illustrative examples from studies in many different industries, on how to implement total information risk management, which will help your organization:

  • Learn how to manage data and information for business value.
  • Create powerful and convincing business cases for all your data and information management, data governance, big data, data warehousing, business intelligence, and business analytics initiatives, projects, and programs.
  • Protect your organization from risks that arise through poor data and information assets.
  • Quantify the impact of having poor data and information.


Additional Listening Options:


Popular OCDQ Radio Episodes

Clicking on the link will take you to the episode’s blog post:

  • Demystifying Data Science — Guest Melinda Thielbar, a Ph.D. Statistician, discusses what a data scientist does and provides a straightforward explanation of key concepts such as signal-to-noise ratio, uncertainty, and correlation.
  • Data Quality and Big Data — Guest Tom Redman (aka the “Data Doc”) discusses Data Quality and Big Data, including if data quality matters less in larger data sets, and if statistical outliers represent business insights or data quality issues.
  • Demystifying Master Data Management — Guest John Owens explains the three types of data (Transaction, Domain, Master), the four master data entities (Party, Product, Location, Asset), and the Party-Role Relationship, which is where we find many of the terms commonly used to describe the Party master data entity (e.g., Customer, Supplier, Employee).
  • Data Governance Star Wars — Special Guests Rob Karel and Gwen Thomas joined this extended, and Star Wars themed, discussion about how to balance bureaucracy and business agility during the execution of data governance programs.
  • The Johari Window of Data Quality — Guest Martin Doyle discusses helping people better understand their data and assess its business impacts, not just the negative impacts of bad data quality, but also the positive impacts of good data quality.
  • Data Profiling Early and Often — Guest James Standen discusses data profiling concepts and practices, and how bad data is often misunderstood and can be coaxed away from the dark side if you know how to approach it.
  • Studying Data Quality — Guest Gordon Hamilton discusses the key concepts from recommended data quality books, including those which he has implemented in his career as a data quality practitioner.